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Comment on ‘‘Localized vortices with a semi-integer charge in nonlinear dynamical lattices’’

Magnus Johansson*
Department of Physics and Measurement Technology, Linko¨ping University, S-581 83 Linko¨ping, Sweden

~Received 22 December 2001; published 24 October 2002!

In a recent paper by Kevrekidis, Malomed, Bishop, and Frantzeskakis@Phys. Rev. E65, 016605~2001!# the
existence of localized vortices with semi-integer topological charge as exact stationary solutions in a two-
dimensional discrete nonlinear Schro¨dinger model is claimed, as well as the existence of an analog solution in
the one-dimensional model. We point out that the existence of such exact stationary solutions would violate
fundamental conservation laws, and therefore these claims are erroneous and appear as a consequence of
inaccurate numerics. We illustrate the origin of these errors by performing similar numerical calculations using
more accurate numerics.

DOI: 10.1103/PhysRevE.66.048601 PACS number~s!: 41.20.Jb, 63.20.Pw
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After it was originally suggested by Aubry and co-work
@1,2#, it is by now a well-known fact that two-dimensiona
~2D! nonlinear Hamiltonian lattices may sustain exact, l
early stable solutions of the vortex type, which are spatia
exponentially localized and time periodic, and carry an
ergy current by means of a phase torsion in a closed lo
Such solutions were explicitly calculated numerically to hi
precision, using Newton-type schemes, for Klein-Gordon@3#
as well as discrete nonlinear Schro¨dinger ~DNLS! @4# lat-
tices, and their linear stability for small intersite couplin
was also explicitly demonstrated. Some recent publicati
@5# have revisited this topic and provided some additio
explicit examples of discrete localized vortices in DNLS la
tices and illustrated explicitly the mechanisms of the ins
bility that, as was mentioned already in@3,4#, may occur
when the intersite coupling is increased.

However, in the very recent Ref.@6#, to which this com-
ment pertains, Kevrekidis, Malomed, Bishop, and Fran
eskakis claim to demonstrate a very surprising result wh
if true, would go beyond all examples of discrete localiz
vortices found earlier: the existence of an exact stable
tionary vortex with semi-integer topological charge,S
51/2, in a DNLS lattice. Unfortunately, the claim is fals
and, as we point out below, contradicts fundamental con
vation laws of the DNLS model. The erroneous claim
based on using numerical schemes which, as we illust
below, are not accurate enough to determine whether
particular configurations obtained in Ref.@6#, for some rather
extreme parameter values close to the uncoupled limit,
exact or only approximate solutions to the DNLS equatio

The explicit example proposed in Ref.@6#, described by
Eqs. ~9! and Fig. 1 in Ref.@6#, is quasi-one-dimensiona
~quasi-1D! and consists, in the ‘‘anticontinuous’’ limitC
50 @using notations as in Eqs.~1!–~6! in Ref. @6##, of two
sites with equal nonzero amplitude, phase shifted byp/2,
situated along a row in the 2D DNLS lattice, while all oth
sites atC50 have amplitude zero. Since the configuration
quasi-1D, the authors of Ref.@6# also consider in Sec. III of
their paper its analog in a 1D lattice. We should note tha
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all the explicit examples given in Ref.@6#, the distance be-
tween the sites of nonzero amplitude is rather large, ap
ently six sites in Fig. 3 and ten sites in Fig. 5~although the
text claims a distance of six sites also in the latter figure!.

As the configuration is quasi-1D, we will here for simplic
ity first formulate our criticisms in the framework of the 1
model, and then show how the same arguments can be
tended also to the 2D case. The 1D DNLS equation@Eq. ~1!
in Ref. @6## has two conserved quantities, normN and
HamiltonianH, with corresponding flux densitiesJN andJH
~see, e.g., Ref.@7#!:

N5(
n

ucnu2, JN52C Im@cn* cn11#, ~1!

H5(
n

S Cucn112cnu22
1

2
ucnu4D ,

JH522C Re@ċn11~cn11* 2cn* !#. ~2!

For a stationary, time-periodic solution of the formcn
5exp(iLt)un as considered in Ref.@6# @Eq. ~5!#, the flux
~current! densities take the formJN52C Im(un11un* ) and
JH52LJN . As for such solutions~which are not the only
kinds of solutions that might yield localized vortices in 2
@4# but the only kind considered in Ref.@6#! the norm density
ucnu2 is constant in time for each siten, the net flow of
incoming and outgoing current densityJN from sitesn61
must be zero at each siten ~the corresponding is of cours
also true in 2D taking into account the four possible dire
tions!. Now, separating amplitudes and phases by writ
un5uunuexp(ifn) yields JN52Cuun11uuunusin(fn112fn), so
that, just as in standard quantum mechanics, any nontr
phase gradient creates a current. Thus, as for a statio
state,JN must be constant everywhere, we can directly co
clude that for any localized solution for whichuunu→0, unu
→` we must haveJN[0, and thus the only possible phas
gradients whenCÞ0 are fn112fn50,p ~the particular
caseu2k[0 for which JN[0 must necessarily be periodi
and therefore nonlocalized!. Thus, we conclude that the so
lutions proposed in Ref.@6#, Sec. III, having a total phase
gradient ofp/2 over six ~or ten! sites distance, cannot b
©2002 The American Physical Society01-1
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COMMENTS PHYSICAL REVIEW E 66, 048601 ~2002!
exact stationary solutions to the 1D DNLS equation as th
existence would violate the conservation laws~1!, ~2!.

The same argument carries directly over to quasi-1D c
figurations in the 2D DNLS equation, since no net curre
can flow in the perpendicular directions for symmetry re
sons. Consequently, also the vortices with semi-integer to
logical charge proposed in Sec. II of Ref.@6# cannot exist as
exact solutions. To make this argument explicit, conside
hypothetical stationary solution of the form proposed in E
~8! of Ref. @6#: um,n5uum,nuexp(ifm,n) with fm,n;2uuu/2,
whereu is the polar angle in the lattice plane, measured
thatu50 defines the line between the two sites with nonz
amplitude forC50 ~‘‘row m510’’ in the notation of Ref.
@6#!, and the origin is halfway between these sites. Cons
then the total current flow through an infinite ‘‘vertical’’ line
chosen, e.g., as the ‘‘columnn510’’ in the notation of Ref.
@6# and defined byu56p/2. Because of its very construc
tion, the solution is symmetric with respect to reflection
the ‘‘horizontal’’ line ‘‘ m510’’ ~cf. Figs. 1 and 3 in Ref.@6#!,
and therefore the contributions to the total current from ro
in the ‘‘upper’’ half plane (m.10) must be identical to, and
in the same direction as, the contributions from the corre
sponding rows in the ‘‘lower’’ half plane (m,10). Since for
each rowm such a hypothetical solution must have a no
trivial phase gradient between any sitesn and n11 (0
,fm,n112fm,n,p/2 by construction! yielding a nonzero
horizontal current just as in the 1D case, with the same~posi-
tive! sign for all rows, the total current summed over all row
across the vertical line must also be nonzero. But since
solution is assumed to be localized, by the same argume
in the 1D case there can be no current at infinity, and t
such a solution cannot be stationary since the norm~and
Hamiltonian! current flowing from one half plane to th
other is uncompensated. More generally, in other model
anharmonic Hamiltonian lattices where energy is the o
conserved quantity, the same kind of argument applies re
ing phase gradients of time-periodic solutions to energy c
rents@2,3#.

Although the simple argument above immediately d
proves the claims of existence of localized quasi-1D mo
with a phase gradient in Ref.@6#, it is still instructive to trace
the origin of these erroneous claims. We first note that
tail of a single one-site breather in the 1D DNLS equat
decays exponentially asun;exp(2bunu), where coshb
5L/(2C)11. Using, for example, the parameter values in
cated in Fig. 5 of Ref.@6# (C50.005 andL50.32), we
obtainb'4.2 so that over a distance of six sites the breat
would decay with a factor;10211 and over ten sites with
;10218. Thus, the interaction between two breathers
serted at such distances as in Ref.@6# would be extremely
weak, and, with the numerical accuracy reported in the pa
(1028), an approximate solution with an arbitrary relativ
phase between the two breathers could easily be mistake
an exact stationary solution, since the currentJN that would
flow would be very small but always nonzero, unless
relative phases were 0 orp. A clear sign of the insufficient
numerical accuracy~for the 2D case! can be seen in Fig. 2 o
Ref. @6#, where the stability analysis showstwo pairs of sta-
bility eigenvalues which are closer to zero than the claim
04860
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numerical accuracy of the solution 1028. In the absence of
additional symmetries, a stationary solution normally on
has one zero eigenvalue corresponding to the overall ph
degeneracy; the existence of a second zero~to the used pre-
cision! eigenvalue here, not related to any symmetries, in
cates that the Newton scheme has not yet converged t
exact solution.

To ultimately resolve the apparent conflict between
numerical claims in Ref.@6# and the general nonexistence
localized 1D or quasi-1D stationary solutions with a pha
gradient, we have attempted to calculate the same kind
solutions as reported in Sec. III of Ref.@6#, for the same
parameters, using the same kind of Newton method as
scribed in Ref.@6# but with higher accuracy, using whe
necessary quadruple precision arithmetics. We have fo
that the maximum value ofC for which the numerical
scheme converges, within the prescribed accuracy, to a s
tion with a p/2 phase difference between the constituti
breathers as expected decreases towards zero when th
lowed error of the solution is decreased. Typical results
illustrated in Fig. 1. We have also, in the same way,
tempted to calculate the vortices with semi-integer topolo
cal charge reported in Sec. II B of Ref.@6# for the 2D model,
with very similar results as for the 1D case~filled squares in
Fig. 1!. ~As described in Ref.@3# other numerical scheme
using, e.g., singular value decomposition would, in princip
be more suitable here and have also been implemented
similar results; however we refrain from discussing this h
to facilitate comparison with the results of Ref.@6#.!

I thank S. Aubry and G. Kopidakis for many enlightenin
discussions during several years of collaboration, and
knowledge financial support from the Swedish Resea
Council.

FIG. 1. Line with crosses: Maximum value ofC for which the
Newton algorithm ‘‘converges’’ to a solution that is an ‘‘exact
stationary solution to the 1D DNLS equation to accuracye with a
p/2 phase shift between two breathers placed six sites aparL
50.32 as in Ref.@6#!. The convergence criterion used isSn@ z(L
2uunu2)xn2CD2xnz1 z(L2uunu2)yn2CD2ynz#,e, where un5xn

1 iyn ; xn ,yn real. The approximate relation isCmax;e0.215. Filled
squares: Corresponding results for the 2D case~only a few points
are calculated since the 2D calculations in quadruple precision
computationally expensive!.
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